Comments on "Cartier type"

November 29, 2018

L. Illusie has pointed out that it is very unusual for a Dieudonné complex do be both saturated and of Cartier type, a remark he attributes to A. Matthew. Here is another view of this somewhat disturbing comment and a suggested terminological variation that may ameliorate the psychological distress it causes.

Let (M, d, F) be a Dieudonné complex. We assume that each term is *p*-torsion free. Then *F* induces a morphism of complexes:

$$\alpha: (M^{\cdot}, d) \to \eta_p(M^{\cdot}, d).$$

Let P denote the *p*-adic filtration on M^{\cdot} and let \tilde{P} denote its décalée. Thus $\eta_p(M^{\cdot}, d) = \tilde{P}^0(M^{\cdot}, d)$. It is easy to check that $\tilde{P}^1M^{\cdot} = p\tilde{P}^0M^{\cdot}$, so that $\operatorname{Gr}^0_{\tilde{P}}(M^{\cdot}, d) \cong \tilde{P}^0M^{\cdot} \otimes (\mathbb{Z}/p\mathbb{Z})$. We have a commutative diagram of complexes:

Here $\overline{\alpha}$ identifies with $\alpha \otimes \operatorname{id}_{\mathbb{Z}/p\mathbb{Z}}$, π is the (surjective) quasi-isomorphism defined by Deligne, and β is the Bockstein differential. If $x \in M^i$, then $\alpha(x) = p^i F(x)$; if \overline{x} is the class of x in M^i/pM^i , then $\overline{\gamma}(\overline{x})$ is the class of F(x), and if $z \in \operatorname{Gr}^0_{\tilde{P}} M$ is the class of $p^i y \in \tilde{P}^0 M^i$, then $dy \in pM^{i+1}$ and $\pi(z)$ is the class of the image of y in $H^i(M^{\cdot}/pM^{\cdot}, d)$. Thus $\overline{\gamma}$ takes \overline{x} to the class of F(x). Let us consider the following conditions;

- 1. The map $\overline{\gamma}$ is an isomorphism of graded abelian groups (hence of complexes), i.e., (M, d, F) is of Cartier type.
- 2. The map α is an isomorphism of graded abelian groups (hence of complexes), i.e., (M, d, F) is saturated.
- 3. The map $\overline{\gamma}$ is a quasi-isomorphism. Let's then say that (M, d, F) is of quasi-Cartier type. Since π is always a quasi-isomorphism, we see that (M, d, F) is of quasi-Cartier type if and only if $\overline{\alpha}$ is a quasi-isomorphism.
- 4. The map α is a quasi-isomorphism. Let us then say that (M^{\cdot}, d, F) is quasi-saturated.

If M is of Cartier type, it is of quasi-Cartier type. If M is saturated, it is quasi-saturated. If the terms of M are p-adically complete, then α is a quasi-isomorphism if and only if $\overline{\alpha}$ is. Thus M is quasi-saturated if and only if it is of quasi-Cartier type. If M is quasi-saturated, the map $M \to Sat(M)$ is a quasi-isomorphism.

Proposition 1 Suppose that (M^{\cdot}, d, F) is saturated and of Cartier type and that each term of M^{\cdot} is p-adically separated. Then F is surjective and d = 0.

Proof: If α is an isomorphism, then $\overline{\alpha}$ is also an isomorphism, and hence if also (M^{\cdot}, d, F) is of Cartier type, π is an isomorphism. Say $x \in M^i$. Then $p^{i+1}x \in \tilde{P}^0 M^i$ and the class of $p^{i+1}x$ in $\operatorname{Gr}^0_{\bar{P}} M^i$ lies in $\operatorname{Ker}(\pi)$. Since π is an isomorphism, it follows that $p^{i+1}x \in \tilde{P}^1 M^i = p\tilde{P}^0 M^i$, and hence $p^ix \in \tilde{P}^0 M^i$. Thus $\tilde{P}^0 M^i = p^i M^i$. Since α is surjective, it follows that $F: M^i \to M^i$ is surjective. Since dF is divisible by p and M^{i+1} is p-adically separated, it follows that d = 0.